0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSignificance Solar-powered chemical production from CO 2 promises to alleviate petrochemical consumption. Hybrid systems of an inorganic semiconductor light harvester and a microbial catalyst offer a viable way forward. Whereas a number of such systems have been described, the semiconductor-to-bacterium electron transfer mechanism remains largely unknown, limiting rational approaches to improving their performance. In this work, we look at how a semiconductor nanoparticle-sensitized bacterium transforms CO 2 and sunlight into acetic acid, a known precursor for fuels, food, pharmaceuticals, and polymers. Using time-resolved spectroscopy and biochemical analysis, we conclude that multiple pathways facilitate electron and light energy transfer from semiconductor to bacterium. This foundational study enables future investigation, understanding, and improvement of complex biotic–abiotic hybrid systems.
Nikolay Kornienko, Kelsey K. Sakimoto, David M. Herlihy, Son C. Nguyen, Paul Alivisatos, Charles B. Harris, Adam Schwartzberg, Peidong Yang (2016). Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. , 113(42), DOI: https://doi.org/10.1073/pnas.1610554113.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1073/pnas.1610554113
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access