Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Galaxy-cluster gravitational lenses enable the study of faint galaxies even at large lookback times, and, recently, time-delay constraints on the Hubble constant. There have been few tests, however, of lens model predictions adjacent to the critical curve (≲8″) where the magnification is greatest. In a companion paper, we use the GLAFIC lens model to constrain the Balmer L – σ relation for H ii regions in a galaxy at redshift z = 1.49 strongly lensed by the MACS J1149 galaxy cluster. Here we perform a detailed comparison between the predictions of 10 cluster lens models that employ multiple modeling assumptions with our measurements of 11 magnified, giant H ii regions. We find that that the models predict magnifications an average factor of 6.2 smaller, a ∼2 σ tension, than that inferred from the H ii regions under the assumption that they follow the low-redshift L – σ relation. To evaluate the possibility that the lens model magnifications are strongly biased, we next consider the flux ratios among knots in three images of Sp1149, and find that these are consistent with model predictions. Moreover, while the mass-sheet degeneracy could in principle account for a factor of ∼6 discrepancy in magnification, the value of H 0 inferred from SN Refsdal’s time delay would become implausibly small. We conclude that the lens models are not likely to be highly biased, and that instead the H ii regions in Sp1149 are substantially more luminous than the low-redshift Balmer L – σ relation predicts.
Hayley Williams, Patrick L. Kelly, Wenlei Chen, J. M. Diego, Masamune Oguri, Alexei V Filippenko (2024). Sp1149. II. Spectroscopy of H ii Regions near the Critical Curve of MACS J1149 and Cluster Lens Models. , 967(2), DOI: https://doi.org/10.3847/1538-4357/ad4354.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3847/1538-4357/ad4354
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access