0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper proposes an integrated decision-making framework for the systematic selection of a renewable energy source (RES) from a set of RESs based on sustainability attributes. A real case study of RES selection in Karnataka, India, using the framework is demonstrated, and the results are compared with state-of-the-art methods. The main reason for developing this framework is to handle uncertainty and vagueness effectively by reducing human intervention. Systematic selection of RESs also reduces inaccuracies and promotes rational decision-making. In this paper, q-rung orthopair fuzzy information is adopted to minimize subjective randomness by providing a flexible and generalized preference style. Further, the study found systematic approaches for imputing missing values, calculating attributes’ and decision-makers’ weights, aggregation or preferences, and prioritizing RESs, which are integrated into the framework. . Comparing the proposed framework with state-of-the-art-methods shows that (i) biomass and solar are suitable RESs for the process under consideration in Karnataka, (ii) the proposed framework is consistent with state-of-the-art methods, (iii) the proposed framework is sufficiently stable even after weights of attributes and decision makers are altered, and (iv) the proposed framework produces broad and sensible rank values for efficient backup management. These results validate the significance of the proposed framework.
R. Krishankumar, Sandeep Nimmagadda, Pratibha Rani, Arunodaya Raj Mishra, K. S. Ravichandran, Amir Gandomi (2020). Solving renewable energy source selection problems using a q-rung orthopair fuzzy-based integrated decision-making approach. Journal of Cleaner Production, 279, pp. 123329-123329, DOI: 10.1016/j.jclepro.2020.123329.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Journal of Cleaner Production
DOI
10.1016/j.jclepro.2020.123329
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access