Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Soil organic matter formation is controlled by the chemistry and bioavailability of organic carbon inputs across different land uses

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Soil organic matter formation is controlled by the chemistry and bioavailability of organic carbon inputs across different land uses

0 Datasets

0 Files

English
2021
The Science of The Total Environment
Vol 770
DOI: 10.1016/j.scitotenv.2021.145307

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Mohammad Bahadori
Chengrong Chen
Stephen Lewis
+6 more

Abstract

Soil organic matter (SOM) formation involves microbial transformation of plant materials of various quality with physico-chemical stabilisation via soil aggregation. Land use and vegetation type can affect the litter chemistry and bioavailability of organic carbon (OC), and consequently influence the processing and stabilisation of OC into SOM. We used 13C nuclear magnetic resonance (13C NMR) and hot-water extraction to assess the changes in chemical composition and labile OC fractions during the transformation processes from leaf to litter to SOM depending on land use and vegetation type. The hot-water-extractable OC (HWEOC) decreased from leaf (43–65 g kg−1) to litter (19–23 g kg−1) to SOM (8–16 g kg−1) similar in four land use types: grassland, sugarcane, forest and banana. These trends demonstrated the uniform converging pathways of OC transformation and increasing stability by SOM formation. The preferential decomposition and decrease of labile OC fractions (∑% di-O-alkyl, O-alkyl and methoxyl) from leaf (54–69%) to SOM (41–43%) confirmed the increasing stability of the remaining compounds. Despite differences in the biochemical composition of the leaf tissues among the vegetation types, the proportions of labile OC fractions in SOM were similar across land uses. The OC content of soil was higher in forest (7.9%) and grassland (5.2%) compared to sugarcane (2.3%) and banana (3.0%). Consequently, the HWEOC per unit of soil weight was higher in forest and grassland (2.0 and 1.2 g kg−1 soil, respectively) compared to sugarcane and banana (0.3 and 0.4 g kg soil−1, respectively). The availability of labile SOM is dependent on the quantity of SOM not the chemical composition of SOM. In conclusion, labile OC fractions in SOM, as identified by 13C NMR, were similar across land use regardless of vegetation type and consequently, SOM formation leads to convergence of chemical composition despite diversity of OC sources.

How to cite this publication

Mohammad Bahadori, Chengrong Chen, Stephen Lewis, Sue E. Boyd, Mehran Rezaei Rashti, Mohsen Esfandbod, Alexandra Garzon‐Garcia, Lukas Van Zwieten, Yakov Kuzyakov (2021). Soil organic matter formation is controlled by the chemistry and bioavailability of organic carbon inputs across different land uses. The Science of The Total Environment, 770, pp. 145307-145307, DOI: 10.1016/j.scitotenv.2021.145307.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

9

Datasets

0

Total Files

0

Language

English

Journal

The Science of The Total Environment

DOI

10.1016/j.scitotenv.2021.145307

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access