0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract When digestates from anaerobic digestion of crop residues are added to soil, a considerable body of information indicates that soil organic carbon (SOC) levels are comparable to those when crop residues are left in the field. This occurs although the amount of digestate added to soil is diminished by digestion and implies that digestion increases the proportion of carbon inputs stabilized as SOC. Here we examine the likelihood and implications of these features being manifested for soil application of high lignin-fermentation byproduct (HLFB) from liquid biofuel production. We show that steady-state SOC levels are much less sensitive to crop residue removal with HLFB return than without it, and provide an example supporting the feasibility of foregoing process energy and coproduct revenue when HLFB is returned to the soil. Informed by this review and analysis, we expect with moderate confidence that long-term SOC levels for soils amended with HLFB from some liquid cellulosic biofuel processes will not be substantially lower than those occurring when crop residues are left in the field. We have high confidence that the economically optimum rate of fertilizer nitrogen (N) application and N 2 O emissions will be lower at most sites for HLFB return to the soil than if crop residues were left in the field. We estimate that the per hectare N demand for processing crop residues to liquid biofuels is about a third of the per hectare demand for crop production, giving rise to an opportunity to use N twice and thereby realize cost savings and environmental benefits. These observations support but do not prove the hypothesis that a ‘win-win’ is possible wherein large amounts of liquid biofuel feedstock can be obtained from crop residues while improving the economics and sustainability of food and feed production. A research agenda aimed at exploring and testing this hypothesis is offered.
Lee R. Lynd, Armen R. Kemanian, Jo Smith, Tom L. Richard, Anela Arifi, Stefano Bozzetto, Claudio Fabbri, John Field, Caitlin Hicks Pries, Marta Kubiś, Pete Smith, Michelle Wang, Madeline Hoey (2024). Soil application of high-lignin fermentation byproduct to increase the sustainability of liquid biofuel production from crop residues. , 19(8), DOI: https://doi.org/10.1088/1748-9326/ad601a.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
13
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1088/1748-9326/ad601a
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access