Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2019

Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion

0 Datasets

0 Files

en
2019
Vol 19 (6)
Vol. 19
DOI: 10.1021/acs.nanolett.9b01057

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Paul Alivisatos
Paul Alivisatos

University of Chicago

Verified
Stefan Fischer
Randy D. Mehlenbacher
Alice Lay
+9 more

Abstract

The optical efficiency of lanthanide-based upconversion is intricately related to the crystalline host lattice. Different crystal fields interacting with the electron clouds of the lanthanides can significantly affect transition probabilities between the energy levels. Here, we investigate six distinct alkaline-earth rare-earth fluoride host materials (M1- xLn xF2+x, MLnF) for infrared-to-visible upconversion, focusing on nanoparticles of CaYF, CaLuF, SrYF, SrLuF, BaYF, and BaLuF doped with Yb3+ and Er3+. We first synthesize ∼5 nm upconverting cores of each material via a thermal decomposition method. Then we introduce a dropwise hot-injection method to grow optically inert MYF shell layers around the active cores. Five distinct shell thicknesses are considered for each host material, resulting in 36 unique, monodisperse upconverting nanomaterials each with size below ∼15 nm. The upconversion quantum yield (UCQY) is measured for all core/shell nanoparticles as a function of shell thickness and compared with hexagonal (β-phase) NaGdF4, a traditional upconverting host lattice. While the UCQY of core nanoparticles is below the detection limit (<10-5%), it increases by 4 to 5 orders of magnitude as the shell thickness approaches 4-6 nm. The UCQY values of our cubic MLnF nanoparticles meet or exceed the β-NaGdF4 reference sample. Across all core/shell samples, SrLuF nanoparticles are the most efficient, with UCQY values of 0.53% at 80 W/cm2 for cubic nanoparticles with ∼11 nm edge length. This efficiency is 5 times higher than our β-NaGdF4 reference material with comparable core size and shell thickness. Our work demonstrates efficient and bright upconversion in ultrasmall alkaline-earth-based nanoparticles, with applications spanning biological imaging and optical sensing.

How to cite this publication

Stefan Fischer, Randy D. Mehlenbacher, Alice Lay, Chris Siefe, Paul Alivisatos, Jennifer A. Dionne, Stefan Fischer, Randy D. Mehlenbacher, Alice Lay, Chris Siefe, Paul Alivisatos, Jennifer A. Dionne (2019). Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion. , 19(6), DOI: https://doi.org/10.1021/acs.nanolett.9b01057.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

12

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acs.nanolett.9b01057

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access