0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWith the rapid advances in computer vision, human action recognition has gradually received attention, but the current methods still exhibit some problems in indoor environments. The human skeleton, as the framework of human motion, contains high-quality actional feature information, and the skeleton-based action recognition method effectively avoid the interference of interior background noise and has advantages in indoor action recognition. The outstanding effect of graph convolutional networks on graph structure data processing has led to its rapid development and wide application in skeleton-based action recognition. Second-order skeletal information also contains a large number of actional features but is not effectively utilized. The artificial predefined topology of the human skeleton map has limitations, and cannot reflect the interaction between limbs. To solve the above problems, this article designs an adaptive weighted multi-stream graph convolutional network (AM-GCN) based on skeletal information, using an attention mechanism to enhance the network's ability to extract actional features, and an adaptive layer to make the construction graph more flexible, incorporating second-order skeletal features through a dual-stream architecture. In this article, the NTU-RGB+D dataset has been used for the experiments, the results show that the method in this article has good results.
Jiazhuo Li, Luefeng Chen, Min Li, Min Wu, Witold Pedrycz, Kaoru Hirota (2023). Skeleton-Based Multi-Stream Adaptive Graph Convolutional Network for Indoor Scene Action Recognition. , DOI: https://doi.org/10.1109/cac59555.2023.10451388.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/cac59555.2023.10451388
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access