0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract The selective functionalization of one C−H bond over others in nearly identical steric and electronic environments can facilitate the construction of complex molecules. We report site‐selective functionalizations of C−H bonds, differentiated solely by remote substituents, catalyzed by artificial metalloenzymes (ArMs) that are generated from the combination of an evolvable P450 scaffold and an iridium‐porphyrin cofactor. The generated systems catalyze the insertion of carbenes into the C−H bonds of a range of phthalan derivatives containing substituents that render the two methylene positions in each phthalan inequivalent. These reactions occur with site‐selectivity ratios of up to 17.8:1 and, in most cases, with pairs of enzyme mutants that preferentially form each of the two constitutional isomers. This study demonstrates the potential of abiotic reactions catalyzed by metalloenzymes to functionalize C−H bonds with site selectivity that is difficult to achieve with small‐molecule catalysts.
Yang Gu, Sean N. Natoli, Zhennan Liu, Douglas S. Clark, John F Hartwig (2019). Site‐Selective Functionalization of (sp<sup>3</sup>)C−H Bonds Catalyzed by Artificial Metalloenzymes Containing an Iridium‐Porphyrin Cofactor. , 58(39), DOI: https://doi.org/10.1002/anie.201907460.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/anie.201907460
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access