0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBlock copolymer patterned holey silicon (HS) was successfully integrated into a microdevice for simultaneous measurements of Seebeck coefficient, electrical conductivity, and thermal conductivity of the same HS microribbon. These fully integrated HS microdevices provided excellent platforms for the systematic investigation of thermoelectric transport properties tailored by the dimensions of the periodic hole array, that is, neck and pitch size, and the doping concentrations. Specifically, thermoelectric transport properties of HS with a neck size in the range of 16-34 nm and a fixed pitch size of 60 nm were characterized, and a clear neck size dependency was shown in the doping range of 3.1 × 10(18) to 6.5 × 10(19) cm(-3). At 300 K, thermal conductivity as low as 1.8 ± 0.2 W/mK was found in HS with a neck size of 16 nm, while optimized zT values were shown in HS with a neck size of 24 nm. The controllable effects of holey array dimensions and doping concentrations on HS thermoelectric performance could aid in improving the understanding of the phonon scattering process in a holey structure and also in facilitating the development of silicon-based thermoelectric devices.
Jongwoo Lim, Hung-Ta Wang, Jinyao Tang, Sean C. Andrews, Hongyun So, Jaeho Lee, Dong Hyun Lee, Thomas P. Russell, Peidong Yang (2015). Simultaneous Thermoelectric Property Measurement and Incoherent Phonon Transport in Holey Silicon. , 10(1), DOI: https://doi.org/10.1021/acsnano.5b05385.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.5b05385
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access