0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract It is vital to understand the shear behaviour of reinforced concrete (RC) beams in order to avoid a catastrophic shear failure and design for ductile failure. However, due to the complexity in the shear failure mechanism and various parameters influencing the shear behaviour of RC beams, the accuracy in the determination of the shear capacity remains a challenge. In this paper, machine learning and genetic algorithm are utilized to develop an improved shear design equation for RC deep beams without stirrups. The proposed model considers the parameters influencing the shear capacity of beams including concrete compressive strength, cross-sectional dimension of the beams, aspect ratio, and internal reinforcement ratio. The prediction capability of the proposed model has been compared with that of ACI 318 and resulted in a better prediction in terms of safety, accuracy, and economic aspects.
Tadesse G. Wakjira, Mohamed Ibrahim, Bilal Sajjad, Usama Ebead (2020). Shear capacity of reinforced concrete deep beams using genetic algorithm. , 910(1), DOI: https://doi.org/10.1088/1757-899x/910/1/012002.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1088/1757-899x/910/1/012002
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access