Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Sensitivity of Climate to Changes in NDVI

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2000

Sensitivity of Climate to Changes in NDVI

0 Datasets

0 Files

English
2000
Journal of Climate
Vol 13 (13)
DOI: 10.1175/1520-0442(2000)013<2277:soctci>2.0.co;2

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Compton Tucker
Compton Tucker

NASA Goddard Space Flight Center

Verified
Lahouari Bounoua
G. J. Collatz
S. O. Los
+4 more

Abstract

The sensitivity of global and regional climate to changes in vegetation density is investigated using a coupled biosphere–atmosphere model. The magnitude of the vegetation changes and their spatial distribution are based on natural decadal variability of the normalized difference vegetation index (NDVI). Different scenarios using maximum and minimum vegetation cover were derived from satellite records spanning the period 1982–90. Albedo decreased in the northern latitudes and increased in the Tropics with increased NDVI. The increase in vegetation density revealed that the vegetation's physiological response was constrained by the limits of the available water resources. The difference between the maximum and minimum vegetation scenarios resulted in a 46% increase in absorbed visible solar radiation and a similar increase in gross photosynthetic CO2 uptake on a global annual basis. This increase caused the canopy transpiration and interception fluxes to increase and reduced those from the soil. The redistribution of the surface energy fluxes substantially reduced the Bowen ratio during the growing season, resulting in cooler and moister near-surface climate, except when soil moisture was limiting. Important effects of increased vegetation on climate are a cooling of about 1.8 K in the northern latitudes during the growing season and a slight warming during the winter, which is primarily due to the masking of high albedo of snow by a denser canopy; and a year-round cooling of 0.8 K in the Tropics. These results suggest that increases in vegetation density could partially compensate for parallel increases in greenhouse warming. Increasing vegetation density globally caused both evapotranspiration and precipitation to increase. Evapotranspiration, however, increased more than precipitation, resulting in a global soil-water deficit of about 15%. A spectral analysis on the simulated results showed that changes in the state of vegetation could affect the low-frequency modes of the precipitation distribution and might reduce its low-frequency variability in the Tropics while increasing it in northern latitudes.

How to cite this publication

Lahouari Bounoua, G. J. Collatz, S. O. Los, P. J. Sellers, D. A. Dazlich, Compton Tucker, David A. Randall (2000). Sensitivity of Climate to Changes in NDVI. Journal of Climate, 13(13), pp. 2277-2292, DOI: 10.1175/1520-0442(2000)013<2277:soctci>2.0.co;2.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2000

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Journal of Climate

DOI

10.1175/1520-0442(2000)013<2277:soctci>2.0.co;2

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access