Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Self-Assembly of Magnetic Nanoparticles in Evaporating Solution

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2010

Self-Assembly of Magnetic Nanoparticles in Evaporating Solution

0 Datasets

0 Files

en
2010
Vol 133 (4)
Vol. 133
DOI: 10.1021/ja107138x

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Paul Alivisatos
Paul Alivisatos

University of Chicago

Verified
JiYeon Ku
Deborah M. Aruguete
Paul Alivisatos
+1 more

Abstract

When deposited from an evaporating solution onto a substrate, even nondescript nanoparticles can organize into intricate spatial patterns. Here we show that a simple but long-ranged anisotropy in nanoparticles' interactions can greatly enrich this scenario. In experiments with colloidal Co nanocrystals, which bear a substantial magnetic dipole, we observe assemblies quite distinct from those formed by nonmagnetic particles. Reflecting the strongly nonequilibrium nature of this process, nanocrystal aggregates also differ substantially from expected low-energy arrangements. Using coarse-grained computer simulations of dipolar nanoparticles, we have identified several dynamical mechanisms from which such unusual morphologies can arise. For particles with modest dipole moments, transient connections between growing domains frustrate phase separation into sparse and dense regions on the substrate. Characteristic length scales of the resulting cellular networks depend non-monotonically on the depth of quenches we use to mimic the effects of solvent evaporation. For particles with strong dipole moments, chain-like aggregates formed at early times serve as the agents of assembly at larger scales. Their effective interactions drive the formation of layered loop structures similar to those observed in experiments.

How to cite this publication

JiYeon Ku, Deborah M. Aruguete, Paul Alivisatos, Phillip L. Geissler (2010). Self-Assembly of Magnetic Nanoparticles in Evaporating Solution. , 133(4), DOI: https://doi.org/10.1021/ja107138x.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2010

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/ja107138x

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access