0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMonodispersed transition metal (Pt, Rh, Pd) nanoparticles (NP) in the 0.8–15 nm range have been synthesized and are being used to probe catalytic selectivity in multipath organic transformation reactions. For NP systems, the turnover rates and product distributions depend on their size, shape, oxidation states, and their composition in case of bimetallic NP systems. Dendrimer-supported platinum and rhodium NPs of less than 2 nm diameter usually have high oxidation states and can be utilized for catalytic cyclization and hydroformylation reactions which previously were produced only by homogeneous catalysis. Transition metal nanoparticles in metal core (Pt, Co)––inorganic shell (SiO2) structure exhibit exceptional thermal stability and are well-suited to perform catalytic reactions at high temperatures (>400 °C). Instruments developed in our laboratory permit the atomic and molecular level study of NPs under reaction conditions (SFG, ambient pressure XPS and high pressure STM). These studies indicate continuous restructuring of the metal substrate and the adsorbate molecules, changes of oxidation states with NP size and surface composition variations of bimetallic NPs with changes of reactant molecules. The facile rearrangement of NP catalysts required for catalytic turnover makes nanoparticle systems (heterogeneous, homogeneous and enzyme) excellent catalysts and provides opportunities to develop hybrid heterogeneous-homogeneous, heterogeneous-enzyme and homogeneous-enzyme catalyst systems.
Gabor Somorjai, Yimin Li (2010). Selective Nanocatalysis of Organic Transformation by Metals: Concepts, Model Systems, and Instruments. , 53(13-14), DOI: https://doi.org/10.1007/s11244-010-9511-y.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2010
Authors
2
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1007/s11244-010-9511-y
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access