0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessFeature selection plays an important role in pattern recognition and machine learning. Feature evaluation and classification complexity estimation arise as key issues in the construction of selection algorithms. To estimate classification complexity in different feature subspaces, a novel feature evaluation measure, called the neighborhood decision error rate (NDER), is proposed, which is applicable to both categorical and numerical features. We first introduce a neighborhood rough-set model to divide the sample set into decision positive regions and decision boundary regions. Then, the samples that fall within decision boundary regions are further grouped into recognizable and misclassified subsets based on class probabilities that occur in neighborhoods. The percentage of misclassified samples is viewed as the estimate of classification complexity of the corresponding feature subspaces. We present a forward greedy strategy for searching the feature subset, which minimizes the NDER and, correspondingly, minimizes the classification complexity of the selected feature subset. Both theoretical and experimental comparison with other feature selection algorithms shows that the proposed algorithm is effective for discrete and continuous features, as well as their mixture.
Qinghua Hu, Witold Pedrycz, Dong‐Jun Yu, Jun Lang (2009). Selecting Discrete and Continuous Features Based on Neighborhood Decision Error Minimization. , 40(1), DOI: https://doi.org/10.1109/tsmcb.2009.2024166.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/tsmcb.2009.2024166
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access