0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn the seismic analysis of structural systems, dynamic response prediction is an essential problem and is significant in every stage during the structural life cycle. Conventionally, response analysis is carried out by numerical analysis. However, when the structural parameter is unknown, the establishment of a numerical model will be difficult. Enlightened by the Runge-Kutta (RK) numerical algorithm, this paper proposes a novel recurrent neural network named Runge-Kutta recurrent neural network (RKRNN) to realize the seismic response prediction. A partition training strategy is formulated to train the proposed neural network and to improve the efficiency of training. The proposed model can be trained by using a limited number of samples. Three numerical examples are utilized to validate the feasibility of RKRNN model including a linear three degrees of freedom (DOFs) system, a nonlinear single DOF system with Bouc-Wen hysteresis, and a numerical reinforced concrete bridge model. Additionally, the site monitoring data from a real-world bridge is utilized to further validate the proposed network. The results show that the proposed RKRNN model can effectively and efficiently predict the structural response under seismic load and exhibits robustness to noise, with good potential for applications in engineering practice.
Tianyu Wang, Huile Li, Mohammad Noori, Ramin Ghiasi, Sin‐Chi Kuok, Wael A. Altabey (2023). Seismic response prediction of structures based on Runge-Kutta recurrent neural network with prior knowledge. Engineering Structures, 279, pp. 115576-115576, DOI: 10.1016/j.engstruct.2022.115576.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Engineering Structures
DOI
10.1016/j.engstruct.2022.115576
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access