Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Scheduling by NSGA-II: Review and Bibliometric Analysis

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Scheduling by NSGA-II: Review and Bibliometric Analysis

0 Datasets

0 Files

English
2022
Processes
Vol 10 (1)
DOI: 10.3390/pr10010098

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Iman Rahimi
Amir Gandomi
Kalyanmoy Deb
+2 more

Abstract

NSGA-II is an evolutionary multi-objective optimization algorithm that has been applied to a wide variety of search and optimization problems since its publication in 2000. This study presents a review and bibliometric analysis of numerous NSGA-II adaptations in addressing scheduling problems. This paper is divided into two parts. The first part discusses the main ideas of scheduling and different evolutionary computation methods for scheduling and provides a review of different scheduling problems, such as production and personnel scheduling. Moreover, a brief comparison of different evolutionary multi-objective optimization algorithms is provided, followed by a summary of state-of-the-art works on the application of NSGA-II in scheduling. The next part presents a detailed bibliometric analysis focusing on NSGA-II for scheduling applications obtained from the Scopus and Web of Science (WoS) databases based on keyword and network analyses that were conducted to identify the most interesting subject fields. Additionally, several criteria are recognized which may advise scholars to find key gaps in the field and develop new approaches in future works. The final sections present a summary and aims for future studies, along with conclusions and a discussion.

How to cite this publication

Iman Rahimi, Amir Gandomi, Kalyanmoy Deb, Fang Chen, Mohammad Reza Nikoo (2022). Scheduling by NSGA-II: Review and Bibliometric Analysis. Processes, 10(1), pp. 98-98, DOI: 10.3390/pr10010098.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Processes

DOI

10.3390/pr10010098

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access