0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessElectrophysiological recording technologies can provide critical insight into the function of the nervous system and other biological tissues. Standard silicon-based probes have limitations, including single-sided recording sites and intrinsic instabilities due to the probe stiffness. Here, we demonstrate high-performance neural recording using double-sided three-dimensional (3D) electrodes integrated in an ultraflexible bioinspired open mesh structure, allowing electrodes to sample fully the 3D interconnected tissue of the brain. In vivo electrophysiological recording using 3D electrodes shows statistically significant increases in the number of neurons per electrode, average spike amplitudes, and signal to noise ratios in comparison to standard two-dimensional electrodes, while achieving stable detection of single-neuron activity over months. The capability of these 3D electrodes is further shown for chronic recording from retinal ganglion cells in mice. This approach opens new opportunities for a comprehensive 3D interrogation, stimulation, and understanding of the complex circuitry of the brain and other electrogenic tissues in live animals over extended time periods.
Jung Min Lee, Dingchang Lin, Guosong Hong, Kyoung‐Ho Kim, Hong‐Gyu Park, Charles M. Lieber (2022). Scalable Three-Dimensional Recording Electrodes for Probing Biological Tissues. Nano Letters, 22(11), pp. 4552-4559, DOI: 10.1021/acs.nanolett.2c01444.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Nano Letters
DOI
10.1021/acs.nanolett.2c01444
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access