Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Role of powder particle size on laser powder bed fusion processability of AlSi10mg alloy

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Role of powder particle size on laser powder bed fusion processability of AlSi10mg alloy

0 Datasets

0 Files

English
2020
Additive manufacturing
Vol 37
DOI: 10.1016/j.addma.2020.101630

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jean-pierre Kruth
Jean-pierre Kruth

Ku Leuven

Verified
Mohamed Balbaa
Ali Ghasemi
Eskandar Fereiduni
+3 more

Abstract

Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing (AM) methods which provides an exceptional opportunity to improve the existing designs and move toward fabricating fine features and complex geometries with higher efficiencies. Considering the layer-wise nature of this technique, the possibility of fabricating fine features is tied to the ability to deposit thin powder layers in this process. Since the powder layer thickness is directly dictated by the powder particle size, finer powders are required to further enhance the ability of the L-PBF technique in manufacturing fine features and intricate geometries. Accordingly, this study aims at investigating the processability of fine AlSi10Mg powder (D50 = 9 µm) by using the L-PBF process. The densification level, surface quality and dimensional accuracy of the final parts are investigated in a wide range of process parameters and are compared to those manufactured by the commonly used AlSi10Mg powder (referred to as coarse powder with D50 = 40 µm). The underlying reasons behind the different processability of fine and coarse powders are explored from the density, surface quality, microhardness and dimensional accuracy viewpoints through analyzing the flowability, bed packing density and optical absorption of powders. Moreover, the process-microstructure-microhardness relationship is assessed in detail for both fine and coarse powders. This study reinforces the idea that the utilization of fine powders in the range used in this study for L-PBF processing is rather challenging.

How to cite this publication

Mohamed Balbaa, Ali Ghasemi, Eskandar Fereiduni, M.A. Elbestawi, Suraj Dinkar Jadhav, Jean-pierre Kruth (2020). Role of powder particle size on laser powder bed fusion processability of AlSi10mg alloy. Additive manufacturing, 37, pp. 101630-101630, DOI: 10.1016/j.addma.2020.101630.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Additive manufacturing

DOI

10.1016/j.addma.2020.101630

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access