0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPlasmon rulers, consisting of pairs of gold nanoparticles, allow single-molecule analysis without photobleaching or blinking; however, current plasmon rulers are irreversible, restricting detection to only single events. Here, we present a reversible plasmon ruler, comprised of coupled gold nanoparticles linked by a single aptamer, capable of binding individual secreted molecules with high specificity. We show that the binding of target secreted molecules to the reversible plasmon ruler is characterized by single-molecule sensitivity, high specificity, and reversibility. Such reversible plasmon rulers should enable dynamic and adaptive live-cell measurement of secreted single molecules in their local microenvironment.
Somin Eunice Lee, Chen Qian, Ramray Bhat, Shayne Petkiewicz, Jessica M. Smith, Vivian E. Ferry, Ana Luísa Correia, Paul Alivisatos, Mina J. Bissell (2015). Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules. , 15(7), DOI: https://doi.org/10.1021/acs.nanolett.5b01161.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acs.nanolett.5b01161
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access