Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Residual wide-kernel deep convolutional auto-encoder for intelligent rotating machinery fault diagnosis with limited samples

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Residual wide-kernel deep convolutional auto-encoder for intelligent rotating machinery fault diagnosis with limited samples

0 Datasets

0 Files

English
2021
Neural Networks
Vol 141
DOI: 10.1016/j.neunet.2021.04.003

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Hamid Reza Karimi
Hamid Reza Karimi

Politecnico di Milano

Verified
Daoguang Yang
Hamid Reza Karimi
Kangkang Sun

Abstract

This paper deals with the development of a novel deep learning framework to achieve highly accurate rotating machinery fault diagnosis using residual wide-kernel deep convolutional auto-encoder. Unlike most existing methods, in which the input data is processed by fast Fourier transform (FFT) and wavelet transform, this paper aims to learn important features from limited raw vibration signals. Firstly, the wide-kernel convolutional layer is introduced in the convolutional auto-encoder that can ensure the model can learn effective features from the data without any signal processing. Secondly, the residual learning block is introduced in convolutional auto-encoder that can ensure the model with sufficient depth without gradient vanishing and overfitting problems. Thirdly, convolutional auto-encoder can learn constructive features without massive data. To evaluate the performance of the proposed model, Case Western Reserve University (CWRU) bearing dataset and Southeast University (SEU) gearbox dataset are used to test. The experiment results and comparisons verify the denoising and feature extraction ability of the proposed model in the case of very few training samples.

How to cite this publication

Daoguang Yang, Hamid Reza Karimi, Kangkang Sun (2021). Residual wide-kernel deep convolutional auto-encoder for intelligent rotating machinery fault diagnosis with limited samples. Neural Networks, 141, pp. 133-144, DOI: 10.1016/j.neunet.2021.04.003.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Neural Networks

DOI

10.1016/j.neunet.2021.04.003

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access