Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Research on Lightweight Dynamic Security Protocol for Intelligent In-Vehicle CAN Bus

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2025

Research on Lightweight Dynamic Security Protocol for Intelligent In-Vehicle CAN Bus

0 Datasets

0 Files

English
2025
Sensors
Vol 25 (11)
DOI: 10.3390/s25113380

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yujing Wu
Yujing Wu

Institution not specified

Verified
Yuanhao Wang
Yinan Xu
Zhiquan Liu
+2 more

Abstract

With the integration of an increasing number of outward-facing components in intelligent and connected vehicles, the open controller area network (CAN) bus environment faces increasingly severe security threats. However, existing security measures remain inadequate, and CAN bus messages lack effective security mechanisms and are vulnerable to malicious attacks. Although encryption algorithms can enhance system security, their high bandwidth consumption negatively impacts the real-time performance of intelligent and connected vehicles. Moreover, the message authentication mechanism of the CAN bus requires lengthy authentication codes, further exacerbating the bandwidth burden. To address these issues, we propose an improved dynamic compression algorithm that achieves higher compression rates and efficiency by optimizing header information processing during data reorganization. Additionally, we have proposed a novel dynamic key management approach, incorporating a dynamic key distribution mechanism, which effectively resolves the challenges associated with key management. Each Electronic Control Unit (ECU) node independently performs compression, encryption, and authentication while periodically updating its keys to enhance system security and strengthen defense capabilities. Experimental results show that the proposed dynamic compression algorithm improves the average compression rate by 2.24% and enhances compression time efficiency by 10% compared to existing solutions. The proposed security protocol effectively defends against four different types of attacks. In hardware tests, using an ECU operating at a frequency of 30 MHz, the computation time for the security algorithm on a single message was 0.85 ms, while at 400 MHz, the computation time was reduced to 0.064 ms. Additionally, for different vehicle models, the average CAN bus load rate was reduced by 8.28%. The proposed security mechanism ensures the security, real-time performance, and freshness of CAN bus messages while reducing bus load, providing a more efficient and reliable solution for the cybersecurity of intelligent and connected vehicles.

How to cite this publication

Yuanhao Wang, Yinan Xu, Zhiquan Liu, Suya Liu, Yujing Wu (2025). Research on Lightweight Dynamic Security Protocol for Intelligent In-Vehicle CAN Bus. Sensors, 25(11), pp. 3380-3380, DOI: 10.3390/s25113380.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Sensors

DOI

10.3390/s25113380

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access