0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWith the integration of an increasing number of outward-facing components in intelligent and connected vehicles, the open controller area network (CAN) bus environment faces increasingly severe security threats. However, existing security measures remain inadequate, and CAN bus messages lack effective security mechanisms and are vulnerable to malicious attacks. Although encryption algorithms can enhance system security, their high bandwidth consumption negatively impacts the real-time performance of intelligent and connected vehicles. Moreover, the message authentication mechanism of the CAN bus requires lengthy authentication codes, further exacerbating the bandwidth burden. To address these issues, we propose an improved dynamic compression algorithm that achieves higher compression rates and efficiency by optimizing header information processing during data reorganization. Additionally, we have proposed a novel dynamic key management approach, incorporating a dynamic key distribution mechanism, which effectively resolves the challenges associated with key management. Each Electronic Control Unit (ECU) node independently performs compression, encryption, and authentication while periodically updating its keys to enhance system security and strengthen defense capabilities. Experimental results show that the proposed dynamic compression algorithm improves the average compression rate by 2.24% and enhances compression time efficiency by 10% compared to existing solutions. The proposed security protocol effectively defends against four different types of attacks. In hardware tests, using an ECU operating at a frequency of 30 MHz, the computation time for the security algorithm on a single message was 0.85 ms, while at 400 MHz, the computation time was reduced to 0.064 ms. Additionally, for different vehicle models, the average CAN bus load rate was reduced by 8.28%. The proposed security mechanism ensures the security, real-time performance, and freshness of CAN bus messages while reducing bus load, providing a more efficient and reliable solution for the cybersecurity of intelligent and connected vehicles.
Yuanhao Wang, Yinan Xu, Zhiquan Liu, Suya Liu, Yujing Wu (2025). Research on Lightweight Dynamic Security Protocol for Intelligent In-Vehicle CAN Bus. Sensors, 25(11), pp. 3380-3380, DOI: 10.3390/s25113380.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Sensors
DOI
10.3390/s25113380
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access