Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Remote Hydroamination of Disubstituted Alkenes by a Combination of Isomerization and Regioselective N–H Addition

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Remote Hydroamination of Disubstituted Alkenes by a Combination of Isomerization and Regioselective N–H Addition

0 Datasets

0 Files

en
2023
Vol 145 (7)
Vol. 145
DOI: 10.1021/jacs.2c13054

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
John F Hartwig
John F Hartwig

University of California, Berkeley

Verified
Senjie Ma
Haoyu Fan
Craig S. Day
+2 more

Abstract

Remote hydrofunctionalizations of alkenes incorporate functional groups distal to existing carbon-carbon double bonds. While remote carbonylations are well-known, remote hydrofunctionalizations are most common for addition of relatively nonpolar B-H, Si-H, and C-H bonds with alkenes. We report a system for the remote hydroamination of disubstituted alkenes to functionalize an alkyl chain selectively at the subterminal, unactivated, methylene position. Critical to the high regioselectivity and reaction rates are the electronic properties of the substituent on the amine and the development of the ligand DIP-Ad-SEGPHOS by evaluating the steric and electronic effects of ligand modules on reactivity and selectivity. The remote hydroamination is compatible with a broad scope of alkenes and aminopyridines and enables the regioconvergent synthesis of amines from an isomeric mixture of alkenes. The products can be derivatized by nucleophilic aromatic substitution on the amino substituent with a variety of nucleophiles.

How to cite this publication

Senjie Ma, Haoyu Fan, Craig S. Day, Yumeng Xi, John F Hartwig (2023). Remote Hydroamination of Disubstituted Alkenes by a Combination of Isomerization and Regioselective N–H Addition. , 145(7), DOI: https://doi.org/10.1021/jacs.2c13054.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/jacs.2c13054

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access