0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe formation of complex hierarchical nanostructures has attracted a lot of attention from both the fundamental science and potential applications point of view. Spherulite structures with radial fibrillar branches have been found in various solids; however, their growth mechanisms remain poorly understood. Here, we report real time imaging of the formation of two-dimensional (2D) iron oxide spherulite nanostructures in a liquid cell using transmission electron microscopy (TEM). By tracking the growth trajectories, we show the characteristics of the reaction front and growth kinetics. Our observations reveal that the tip of a growing branch splits as the width exceeds certain sizes (5.5–8.5 nm). The radius of a spherulite nanostructure increases linearly with time at the early stage, transitioning to nonlinear growth at the later stage. Furthermore, a thin layer of solid is accumulated at the tip and nanoparticles from secondary nucleation also appear at the growing front which later develop into fibrillar branches. The spherulite nanostructure is polycrystalline with the co-existence of ferrihydrite and Fe3O4 through-out the growth. Finally, a growth model is further established, which provides rational explanations on the linear growth at the early stage and the nonlinearity at the later stage of growth.
Wenjing Zheng, Matthew R. Hauwiller, Wen‐I Liang, Colin Ophus, Peter Ercius, Emory M. Chan, Ying‐Hao Chu, Mark Asta, Xi‐Wen Du, Paul Alivisatos, Haimei Zheng (2019). Real time imaging of two-dimensional iron oxide spherulite nanostructure formation. , 12(11), DOI: https://doi.org/10.1007/s12274-019-2531-4.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1007/s12274-019-2531-4
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access