0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this work, effects of nonlinear thermal radiation and first order chemical reaction on the boundary layer flow of Williamson nanofluid over a non-uniformly thicked stretchable Riga plate are examined. The analysis is subjected to the newly devised zero nanoparticles mass flux surface conditions and heat transfer due to convective boundary conditions. Governing boundary layer equations depicting mechanical properties of the considered plate and flow over it are made dimensionless using suitable transformations. Numerical results obtained through an implicit finite difference scheme (Keller-box method) reveal that flow inside the boundary layer is substantially influenced by radiation, chemical reaction, and a surface parallel Lorentz force.
Rakesh Kumar, Shilpa Sood, Sabir Ali Shehzad, Mohsen Sheikholeslami (2017). Radiative heat transfer study for flow of non-Newtonian nanofluid past a Riga plate with variable thickness. Journal of Molecular Liquids, 248, pp. 143-152, DOI: 10.1016/j.molliq.2017.10.018.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Journal of Molecular Liquids
DOI
10.1016/j.molliq.2017.10.018
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access