0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPseudoelasticity in metals is typically associated with phase transformations (e.g., shape memory alloys) but has recently been observed in sub-10 nm Ag nanocrystals that rapidly recovered their original shape after deformation to large strains. The discovery of pseudoelasticity in nanoscale metals dramatically changes the current understanding of the properties of solids at the smallest length scales, and the motion of atoms at surfaces. Yet, it remains unclear whether pseudoelasticity exists in different metals and nanocrystal sizes. The challenge of observing deformation at atomistic to nanometer length scales has prevented a clear mechanistic understanding of nanoscale pseudoelasticity, although surface diffusion and dislocation-mediated processes have been proposed. We further the understanding of pseudoelasticity in nanoscale metals by using a diamond anvil cell to compress colloidal Au nanocrystals under quasihydrostatic and nonhydrostatic pressure conditions. Nanocrystal structural changes are measured using optical spectroscopy and transmission electron microscopy and modeled using electrodynamic theory. We find that 3.9 nm Au nanocrystals exhibit pseudoelastic shape recovery after deformation to large uniaxial strains of up to 20%, which is equivalent to an ellipsoid with an aspect ratio of 2. Nanocrystal absorbance efficiency does not recover after deformation, which indicates that crystalline defects may be trapped in the nanocrystals after deformation.
X. Wendy Gu, Carissa N. Eisler, Matthew A. Koc, Paul Alivisatos, X. Wendy Gu, Carissa N. Eisler, Matthew A. Koc, Paul Alivisatos (2018). Pseudoelasticity at Large Strains in Au Nanocrystals. , 121(5), DOI: https://doi.org/10.1103/physrevlett.121.056102.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1103/physrevlett.121.056102
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access