0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessClass imbalance in data poses challenges for classifier learning, drawing increased attention in data mining and machine learning. The occurrence of class overlap in real-world data exacerbates the learning difficulty. In this paper, a novel pseudo oversampling method (POM) is proposed to learn imbalanced and overlapping data. It is motivated by the point that overlapping samples from different classes share the same distribution space, and therefore information underlying in majority (negative) overlapping samples can be extracted and used to generate additional positive samples. A fuzzy logic-based membership function is defined to assess negative overlaps using both local and global information. Subsequently, the identified negative overlapping samples are shifted into the positive sample region by a transformation matrix, centered around the positive samples. POM outperforms 15 methods across 14 datasets, displaying superior performance in terms of metrics of <i>G<sub>m</sub></i>, <I>F</I><sub>1</sub> and <I>AUC</I>.
Tingting Pan, Witold Pedrycz, Jie Yang, Dahai Zhang (2024). Pseudo Oversampling Based on Feature Transformation and Fuzzy Membership Functions for Imbalanced and Overlapping Data. , 13(5), DOI: https://doi.org/10.11648/j.acm.20241305.15.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.11648/j.acm.20241305.15
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access