Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Probabilistic remaining life estimation for deteriorating steel marine infrastructure under global warming and nutrient pollution

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2016

Probabilistic remaining life estimation for deteriorating steel marine infrastructure under global warming and nutrient pollution

0 Datasets

0 Files

English
2016
Ocean Engineering
Vol 126
DOI: 10.1016/j.oceaneng.2016.09.013

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Robert Melchers
Robert Melchers

The University Of Newcastle

Verified
Igor A. Chaves
Robert Melchers
Lizhengli Peng
+1 more

Abstract

The longer-term serviceability and structural safety of steel infrastructure exposed to seawater conditions may be affected by global warming and by seawater nutrient pollution. These may affect abiotic and biotic (microbial) corrosion. A model for long-term corrosion is developed from data obtained from steel piling exposed for 33 years in a seawater harbour. The effects on corrosion losses on the structural reliability of steel sheet piling as used in harbours world-wide were investigated as a function of seawater temperature rise from global warming and of seawater nutrient pollution. The results show that structural reliability is more sensitive to likely nutrient pollution than to predicted increases in seawater temperature, noting also that global warming also could increase nutrient pollution from anthropological sources.

How to cite this publication

Igor A. Chaves, Robert Melchers, Lizhengli Peng, Mark G. Stewart (2016). Probabilistic remaining life estimation for deteriorating steel marine infrastructure under global warming and nutrient pollution. Ocean Engineering, 126, pp. 129-137, DOI: 10.1016/j.oceaneng.2016.09.013.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Ocean Engineering

DOI

10.1016/j.oceaneng.2016.09.013

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access