0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMachine learning (ML) models in material science and construction engineering have significantly improved predictive accuracy and decision making. However, the practical implementation of these models often requires technical expertise, limiting their accessibility for engineers and practitioners. A user-friendly graphical user interface (GUI) can be an essential tool to bridge this gap. In this study, a sustainable approach to improve the compressive strength (C.S) of plastic-based mortar mixes (PMMs) by replacing cement with industrial waste materials was investigated using ML models such as support vector machine, AdaBoost regressor, and extreme gradient boosting. The significance of key mix parameters was further analyzed using SHapley Additive exPlanations (SHAPs) to interpret the influence of input variables on model predictions. To enhance the usability and real-world application of these ML models, a GUI was developed to provide an accessible platform for predicting the C.S of PMMs based on input material proportions. The ML models demonstrated strong correlations with experimental results, and the insights from SHAP analysis further support data-driven mix design strategies. The developed GUI serves as a practical and scalable decision support system, encouraging the adoption of ML-based approaches in sustainable construction engineering.
Aissa Rezzoug, Ahmed A. El-Abbasy, Muwaffaq Alqurashi, Ali Alateah (2025). Predictive Models with Applicable Graphical User Interface (GUI) for the Compressive Performance of Quaternary Blended Plastic-Derived Sustainable Mortar. , 15(11), DOI: https://doi.org/10.3390/buildings15111932.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/buildings15111932
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access