Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Predicting High-Strength Concrete’s Compressive Strength: A Comparative Study of Artificial Neural Networks, Adaptive Neuro-Fuzzy Inference System, and Response Surface Methodology

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Predicting High-Strength Concrete’s Compressive Strength: A Comparative Study of Artificial Neural Networks, Adaptive Neuro-Fuzzy Inference System, and Response Surface Methodology

0 Datasets

0 Files

en
2024
Vol 17 (18)
Vol. 17
DOI: 10.3390/ma17184533

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Ali Alateah
Ali Alateah

Institution not specified

Verified
Tianlong Li
Jianyu Yang
Pengxiao Jiang
+4 more

Abstract

Machine learning and response surface methods for predicting the compressive strength of high-strength concrete have not been adequately compared. Therefore, this research aimed to predict the compressive strength of high-strength concrete (HSC) using different methods. To achieve this purpose, neuro-fuzzy inference systems (ANFISs), artificial neural networks (ANNs), and response surface methodology (RSM) were used as ensemble methods. Using an ANN and ANFIS, high-strength concrete (HSC) output was modeled and optimized as a function of five independent variables. The RSM was designed with three input variables: cement, and fine and coarse aggregate. To facilitate data entry into Design Expert, the RSM model was divided into six groups, with p-values of responses 1 to 6 of 0.027, 0.010, 0.003, 0.023, 0.002, and 0.026. The following metrics were used to evaluate model compressive strength projection: R, R2, and MSE for ANN and ANFIS modeling; R2, Adj. R2, and Pred. R2 for RSM modeling. Based on the data, it can be concluded that the ANN model (R = 0.999, R2 = 0.998, and MSE = 0.417), RSM model (R = 0.981 and R2 = 0.963), and ANFIS model (R = 0.962, R2 = 0.926, and MSE = 0.655) have a good chance of accurately predicting the compressive strength of high-strength concrete (HSC). Furthermore, there is a strong correlation between the ANN, RSM, and ANFIS models and the experimental data. Nevertheless, the artificial neural network model demonstrates exceptional accuracy. The sensitivity analysis of the ANN model shows that cement and fine aggregate have the most significant effect on predicting compressive strength (45.29% and 35.87%, respectively), while superplasticizer has the least effect (0.227%). RSME values for cement and fine aggregate in the ANFIS model were 0.313 and 0.453 during the test process and 0.733 and 0.563 during the training process. Thus, it was found that both ANN and RSM models presented better results with higher accuracy and can be used for predicting the compressive strength of construction materials.

How to cite this publication

Tianlong Li, Jianyu Yang, Pengxiao Jiang, Ali Alateah, Ali Alsubeai, Abdulgafor Alfares, Muhammad Sufian (2024). Predicting High-Strength Concrete’s Compressive Strength: A Comparative Study of Artificial Neural Networks, Adaptive Neuro-Fuzzy Inference System, and Response Surface Methodology. , 17(18), DOI: https://doi.org/10.3390/ma17184533.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.3390/ma17184533

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access