0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Forest management and climate change may have a substantial impact on future soil organic carbon (SOC) stocks at the country scale. Potential SOC in Japanese forest soils was regionally estimated under nine forest managements and a climate change scenario using the CENTURY ecosystem model. Three rotations (30, 50, 100 yr) and three thinning regimes were tested: no‐thinning; 30% of the trees cut in the middle of the rotation (e.g. 15 year in a 30‐yr rotation) and thinned trees all left as litter or slash (ThinLef) and the trees from thinning removed from the forest (ThinRem). A climate change scenario was tested (ca. 3 °C increase in air temperature and 9% increase in precipitation). The model was run at 1 km resolution using climate, vegetation and soil databases. The estimated SOC stock ranged from 1600 to 1830 TgC (from 6800 to 7800 gC/m 2 ), and the SOC stock was largest with the longest rotation and was largest under ThinLef with all three rotations. Despite an increase in net primary production, the SOC stock decreased by 5% under the climate change scenario.
Shoji Hashimoto, Shin Ugawa, Kazuhito Morisada, M. Wattenbach, Pete Smith, Yunosuke Matsuura (2011). Potential carbon stock in Japanese forest soils – simulated impact of forest management and climate change using the CENTURY model. , 28(1), DOI: https://doi.org/10.1111/j.1475-2743.2011.00372.x.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2011
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1111/j.1475-2743.2011.00372.x
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access