0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDirect plant uptake of organic nitrogen (N) is often studied using the dual-labeling approach (15N + 13C or 15N + 14C). However, the method might be hampered by uptake of labeled inorganic carbon (C) produced by mineralization of labeled organic compounds. Here we report the results from a triple labeling experiment (15N + 13C + 14C) investigating whether root uptake of labeled inorganic C can bias the results obtained in studies of organic N uptake using dual-labeled amino acids (15N, 13C). In a rhizosphere tube experiment we investigated 13C and 14C uptake by maize either supplied with labeled glycine or CO 3 2 − , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced by mineralization of amino acids can significantly bias the interpretations of organic N uptake studies using dual-labeling.
Jim Rasmussen, Leopold Sauheitl, Jørgen Eriksen, Yakov Kuzyakov (2009). Plant uptake of dual-labeled organic N biased by inorganic C uptake: Results of a triple labeling study. Soil Biology and Biochemistry, 42(3), pp. 524-527, DOI: 10.1016/j.soilbio.2009.11.032.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2009.11.032
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access