Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Phase-Selective Cation-Exchange Chemistry in Sulfide Nanowire Systems

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2014

Phase-Selective Cation-Exchange Chemistry in Sulfide Nanowire Systems

0 Datasets

0 Files

en
2014
Vol 136 (50)
Vol. 136
DOI: 10.1021/ja511010q

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Paul Alivisatos
Paul Alivisatos

University of Chicago

Verified
Dandan Zhang
Andrew Barnabas Wong
Yi Yu
+6 more

Abstract

As a cation-deficient, p-type semiconductor, copper sulfide (Cu(2-x)S) shows promise for applications such as photovoltaics, memristors, and plasmonics. However, these applications demand precise tuning of the crystal phase as well as the stoichiometry of Cu(2-x)S, an ongoing challenge in the synthesis of Cu(2-x)S materials for a specific application. Here, a detailed transformation diagram of cation-exchange (CE) chemistry from cadmium sulfide (CdS) into Cu(2-x)S nanowires (NWs) is reported. By varying the reaction time and the reactants' concentration ratio, the progression of the CE process was captured, and tunable crystal phases of the Cu(2-x)S were achieved. It is proposed that the evolution of Cu(2-x)S phases in a NW system is dependent on both kinetic and thermodynamic factors. The reported data demonstrate that CE can be used to precisely control the structure, composition, and crystal phases of NWs, and such control may be generalized to other material systems for a variety of practical applications.

How to cite this publication

Dandan Zhang, Andrew Barnabas Wong, Yi Yu, Sarah Brittman, Jianwei Sun, Anthony Fu, Brandon J. Beberwyck, Paul Alivisatos, Peidong Yang (2014). Phase-Selective Cation-Exchange Chemistry in Sulfide Nanowire Systems. , 136(50), DOI: https://doi.org/10.1021/ja511010q.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2014

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/ja511010q

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access