0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUltra-high-performance concrete (UHPC) is one of the contemporary overlay materials for repairing and retrofitting of reinforced concrete (RC) members. It possesses excellent compressive and tensile strength, as well as long durability. Nevertheless, the bonding performance between the overlay interface (UHPC) and the substrate concrete must be adequate under various loading, curing, and exposure circumstances. Therefore, this research examined, experimentally, the interfacial bonding behavior of UHPC overlay and two distinct substrates, namely concrete screed (CS) and self-compacted concrete (SCC). Four parameters impacting bond strength behavior, including three different substrate surface preparations, curing conditions, exposure environments, and testing techniques, were used to fulfill the goal of this study. The tests findings revealed that the substrate surface preparation and the exposure conditions had significant effects on the bond behavior of both UHPC-SC and UHPC-SCC while curing conditions seemed not to have any significant effects. The highest bond strength was obtained for specimens having sandblasted substrate preparation technique regardless of the bond test method. However, specimens tested under the bi-surface shear strength technique exhibited high bonding strength with the drill holes substrate preparation technique due to the presence of drilled holes that were being filled with UHPC. The splitting tensile test is a reliable test technique to examine the impact of repeated cyclic exposure samples. As a result of this, a substantial reduction in bond strength of nearly 32%, 55%, and 26% of the UHPC-SCC and 31.84%, 51.5%, and 41.42% for UHPC-SC interfaces for as-cast (AC), drilling hole (DH), and sandblasting (SB) substrate surface preparations, respectively, were obtained. ANOVA was carried out and found to be aligned with the experimental findings.
Mohammed Al-osta, Shamsad Ahmad, Mohammed K. Al-Madani, Hammad R. Khalid, Mohammed A. Al‐Huri, Amin Al‐Fakih (2022). Performance of bond strength between ultra-high-performance concrete and concrete substrates (concrete screed and self-compacted concrete): An experimental study. Journal of Building Engineering, 51, pp. 104291-104291, DOI: 10.1016/j.jobe.2022.104291.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Journal of Building Engineering
DOI
10.1016/j.jobe.2022.104291
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access