Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Parametric estimation of photovoltaic systems using a new multi-hybrid evolutionary algorithm

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Parametric estimation of photovoltaic systems using a new multi-hybrid evolutionary algorithm

0 Datasets

0 Files

English
2023
Energy Reports
Vol 10
DOI: 10.1016/j.egyr.2023.11.012

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Pankaj Sharma
R. Saravanakumar
Rohit Salgotra
+1 more

Abstract

Integrating solar photovoltaic (PV) systems into the modern power grid introduces a variety of new problems. The accurate modelling of PV is required to strengthen the system characteristics in simulation environments. Modelling such PV systems is reflected by a nonlinear I–V characteristic curve behaviour with numerous unknown parameters because there is insufficient data in the cells' datasheet. As a result, it is always a priority to identify these unknown parameters. To extract features of solar modules and build high-accuracy models for modelling, control, and optimization of PV systems, current–voltage data is required. A hybrid evolutionary algorithm is proposed in this paper for precise and effective parameter estimation from experimental data of various PV models. The proposed algorithm is named as hybrid flower grey differential (HFGD) algorithm and is based on the hybridization of flower pollination algorithm (FPA), grey wolf optimizer (GWO), and differential evolution (DE) algorithm. For performance evaluation, CEC 2019 benchmark data set is used. To increase the accuracy of the output solutions, we also combined the Newton–Raphson approach with the proposed algorithm. Four PV cells/modules with diverse characteristics, including RTC France Single Diode Model (SDM), RTC France Double DM (DDM), Amorphous Silicon aSi:H, and PVM 752 GaAs Thin-Film, are used to validate the effectiveness as well as the feasibility of the proposed algorithm. The parameter results obtained through the utilization of HFGD algorithm have been compared with other evolutionary algorithms through aspects of precision, reliability, and convergence. Based on the outcomes of the comparison, it has been seen that the HFGD algorithm obtained the lowest root-mean-square error (RMSE) value. Friedman's rank and Wilcoxon test are carried out for the statistical analysis of the proposed work. The I–V and P–V characteristics are drawn along with the box plot for different PV cells/modules. Statistical and experimental results show the superiority of the proposed algorithm with respect to its counterpart.

How to cite this publication

Pankaj Sharma, R. Saravanakumar, Rohit Salgotra, Amir Gandomi (2023). Parametric estimation of photovoltaic systems using a new multi-hybrid evolutionary algorithm. Energy Reports, 10, pp. 4447-4464, DOI: 10.1016/j.egyr.2023.11.012.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Energy Reports

DOI

10.1016/j.egyr.2023.11.012

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access