Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Palladium-Catalyzed Amination of Aryl Halides with Aqueous Ammonia and Hydroxide Base Enabled by Ligand Development

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Palladium-Catalyzed Amination of Aryl Halides with Aqueous Ammonia and Hydroxide Base Enabled by Ligand Development

0 Datasets

0 Files

en
2024
Vol 146 (28)
Vol. 146
DOI: 10.1021/jacs.4c05768

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
John F Hartwig
John F Hartwig

University of California, Berkeley

Verified
Kyoungmin Choi
John N. Brunn
Kailaskumar Borate
+5 more

Abstract

The conversion of aryl halides to primary arylamines with a convenient and inexpensive source of ammonia has been a long-standing synthetic challenge. Aqueous ammonia would be the most convenient and least expensive form of ammonia, but such a palladium-catalyzed amination reaction with a high concentration of water faces challenges concerning catalyst stability and competing hydroxylation, and palladium-catalyzed reactions with this practical reagent are rare. Further, most reactions with ammonia to form primary amines are conducted with tert-butoxide base, but reactions with ammonium hydroxide would contain hydroxide as base. Thus, ammonia surrogates, ammonia in organic solvents, and ammonium salts have been used under anhydrous conditions instead with varying levels of selectivity for the primary amine. We report the palladium-catalyzed amination of aryl and heteroaryl chlorides and bromides with aqueous ammonia and a hydroxide base to form the primary arylamine with high selectivity. The palladium catalyst containing a new dialkyl biheteroaryl phosphine ligand (KPhos) suppresses both the formation of aryl alcohol and diarylamine side products. Mechanistic studies with a soluble hydroxide base revealed turnover-limiting reductive elimination of the arylamine and an equilibrium between arylpalladium amido and hydroxo complexes prior to the turnover-limiting step.

How to cite this publication

Kyoungmin Choi, John N. Brunn, Kailaskumar Borate, Rahul Kaduskar, Carlos Lizandara‐Pueyo, Harish M. Shinde, Roland Goetz, John F Hartwig (2024). Palladium-Catalyzed Amination of Aryl Halides with Aqueous Ammonia and Hydroxide Base Enabled by Ligand Development. , 146(28), DOI: https://doi.org/10.1021/jacs.4c05768.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/jacs.4c05768

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access