Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Oxygenated sunflower biodiesel: Spectroscopic and emissions quantification under reacting swirl spray conditions

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Oxygenated sunflower biodiesel: Spectroscopic and emissions quantification under reacting swirl spray conditions

0 Datasets

0 Files

English
2019
Energy
Vol 178
DOI: 10.1016/j.energy.2019.04.201

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Agustin Valera Medina
Agustin Valera Medina

Cardiff University

Verified
Cheng Tung Chong
Meng Choung Chiong
Jo-Han Ng
+4 more

Abstract

The spray combustion characteristics of sunflower (Helianthus annuus) biodiesel/methyl esters (SFME) and 50% SFME/diesel blend and diesel were investigated via a liquid swirl flame burner. The swirl flame was established at atmospheric condition by using a combined twin-fluid atomiser-swirler configuration at varied atomising air-to-liquid ratios (ALR) of 2.0–2.5. Diesel flame showed a sooty flame brush downstream of the main reaction zone, as opposed to the biodiesel flame which showed a non-sooty, bluish flame core. Biodiesel flame exhibited a more intense flame spectra with higher OH* radicals as compared to diesel. Higher preheating main swirl air temperature led to higher NO emission, while CO correspondingly decreased. Sunflower-derived biodiesel generally exhibited slightly higher NO and CO levels than diesel when compared at the same power output, mostly due to higher flame temperature and fuel chemistry effect. By increasing ALR, a significant reduction of NO and CO for both fuel types were concurrently achieved, presenting a strategy to control emissions and atomise biodiesel with higher viscosity under swirl combustion mode.

How to cite this publication

Cheng Tung Chong, Meng Choung Chiong, Jo-Han Ng, Mooktzeng Lim, Manh‐Vu Tran, Agustin Valera Medina, William Woei Fong Chong (2019). Oxygenated sunflower biodiesel: Spectroscopic and emissions quantification under reacting swirl spray conditions. Energy, 178, pp. 804-813, DOI: 10.1016/j.energy.2019.04.201.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Energy

DOI

10.1016/j.energy.2019.04.201

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access