0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis work presents a disease detection classifier based on symptoms encoded by their severity. This model is presented as part of the solution to the saturation of the healthcare system, aiding in the initial screening stage. An open-source dataset is used, which undergoes pre-processing and serves as the data source to train and test various machine learning models, including SVM, RFs, KNN, and ANNs. A three-phase optimization process is developed to obtain the best classifier: first, the dataset is pre-processed; secondly, a grid search is performed with several hyperparameter variations to each classifier; and, finally, the best models obtained are subjected to additional filtering processes. The best-results model, selected based on the performance and the execution time, is a KNN with 2 neighbors, which achieves an accuracy and F1 score of over 98%. These results demonstrate the effectiveness and improvement of the evaluated models compared to previous studies, particularly in terms of accuracy. Although the ANN model has a longer execution time compared to KNN, it is retained in this work due to its potential to handle more complex datasets in a real clinical context.
Auba Fuster-Palà, Francisco Luna-Perejón, Lourdes Miró-Amarante, Manuel Jesus Dominguez Morales (2024). Optimized Machine Learning Classifiers for Symptom-Based Disease Screening. , 13(9), DOI: https://doi.org/10.3390/computers13090233.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/computers13090233
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access