Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Optimized machine learning approaches for the prediction of viscoelastic behavior of modified asphalt binders

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Optimized machine learning approaches for the prediction of viscoelastic behavior of modified asphalt binders

0 Datasets

0 Files

English
2021
Construction and Building Materials
Vol 299
DOI: 10.1016/j.conbuildmat.2021.124264

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Alireza Sadat Hosseini
Pouria Hajikarimi
Mostafa Gandomi
+2 more

Abstract

Additives are commonly used in pavement engineering to improve the original bitumen's rheological and mechanical characteristics to meet severe loading and climatic condition requirements. To select the optimum dosage of an additive for modifying the original bitumen, it is essential to predict the viscoelastic behavior of modified bitumens, which can be performed by implementing the constitutive viscoelastic parameters of the complex shear modulus (G*) and phase angle (δ). In this work, a comprehensive experimental database consisting of the results of the frequency sweep mode of a dynamic shear rheometer (DSR) at seven test temperatures (−22 ~ 22 °C) was used. Prediction models for the viscoelastic behavior of bitumen modified with different dosages of crumb rubber, styrene–butadienestyrene (SBS), and polyphosphoric acid (PPA) were developed by optimizing and applying different machine learning approaches, including Artificial Neural Networks (ANN), Robust Linear Regression, Linear Support Vector Regression, Decision Tree Regression, Gaussian Process Regression (GPR), and Ensemble Regression, on the data. By comparing the various studied model outputs in terms of performance measurements, such as the correlation of coefficients, relative root mean square error, scatter index, relative error, and Nash-Sutcliffe efficiency coefficient, it was determined that the Ensemble Regression method has the highest performance in predictions.

How to cite this publication

Alireza Sadat Hosseini, Pouria Hajikarimi, Mostafa Gandomi, Fereidoon Moghadas Nejad, Amir Gandomi (2021). Optimized machine learning approaches for the prediction of viscoelastic behavior of modified asphalt binders. Construction and Building Materials, 299, pp. 124264-124264, DOI: 10.1016/j.conbuildmat.2021.124264.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Construction and Building Materials

DOI

10.1016/j.conbuildmat.2021.124264

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access