Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Optimization of alkali-activated binders using natural minerals and industrial waste materials as precursor materials

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Optimization of alkali-activated binders using natural minerals and industrial waste materials as precursor materials

0 Datasets

0 Files

English
2023
Journal of Building Engineering
Vol 69
DOI: 10.1016/j.jobe.2023.106230

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohammed Al-osta
Mohammed Al-osta

King Fahd University Of Petroleum & Minerals

Verified
Ibrahim N. A. Al-Duais
Shamsad Ahmad
Mohammed Al-osta
+3 more

Abstract

This paper presents the results of a study on developing optimized alkali-activated binders (AABs) utilizing selected natural minerals and industrial byproducts as precursor materials in addition to sodium hydroxide and sodium silicate as activators. Four selected precursor materials (natural pozzolana, limestone powder, red mud, and silicomanganese fume) were characterized in terms of their physical and chemical properties. The proportioning of the four precursor materials was optimized based on the results of flow, setting time, and compressive strength tests conducted on trial mortars. After reaching an optimal proportioning of the four precursor materials, the natural pozzolan was partially replaced by ordinary Portland cement (maximum 30% by wt.) to significantly enhance the properties of the AABs. The activator to precursor (A/P) ratio, sodium silicate to sodium hydroxide (NS/NH) ratio, sodium hydroxide (NH) molarity, and water to precursor (W/P) ratio, were varied from 0.3 to 0.6, 1 to 2.5, 8 to14 M, and 0.35 to 0.55, respectively. The influence of these activation parameters (at the optimally selected proportioning of precursor materials) on the physical and mechanical properties of AABs besides their mineral composition and morphology was investigated leading towards selecting the optimum AABs. The compressive strength at 28 days ranged from 28.5 to 32 MPa, 24.15 to 31.8 MPa, 24.2 to 33.1 MPa, 15.33 to 31.16 MPa, and 19.7 to 34.1 MPa, as A/P ratio, NS/NH ratio, NH molarity, W/P ratio, and curing method and duration were varied, respectively. XRD, FTIR, and SEM analyses of the AABs were conducted to validate the trends observed in the compressive strength results with variation in the activation parameters. The main phases detected by XRD included CSH, CASH, Mn-SH, KASH, and NASH. FTIR analysis showed bands that coincide with reported vibration and stretching of Si–O-M (M → Al, Si, or Mn) that are associated with geopolymerization, while SEM imaging showed dense microstructure with a homogenous distribution of polymerization gels that filled the microcracks and voids. Additionally, the effect of curing regimes (oven, steam and ambient-air curing) on the performance of AABs was also examined. The results of the present work enabled to identify the optimum proportioning of the selected precursor materials, optimum combination of A/P ratio, NS/NH ratio, NH molarity, and W/P ratio for producing the AABs with enhanced performance.

How to cite this publication

Ibrahim N. A. Al-Duais, Shamsad Ahmad, Mohammed Al-osta, Mohammed Maslehuddin, Tawfik A. Saleh, Salah U. Al‐Dulaijan (2023). Optimization of alkali-activated binders using natural minerals and industrial waste materials as precursor materials. Journal of Building Engineering, 69, pp. 106230-106230, DOI: 10.1016/j.jobe.2023.106230.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Journal of Building Engineering

DOI

10.1016/j.jobe.2023.106230

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access