0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe rotation of the plane of polarization of light passing through a non-magnetic material is known as natural optical activity or optical gyrotropy. The behavior of this effect in thin chiral conductors is of current interest. For example, the low frequency limit of gyrotropy in chiral 3D crystals, known as the gyrotropic magnetic effect (GME), is controlled by the orbital magnetic moment of electrons, which has been proposed to be relevant to current-induced switching in twisted bilayer graphene. We show that the GME is not limited to bulk materials but also appears for quasi-2d systems with minimal structure incorporated in the third direction. Starting from multi-band Kubo formula, we derive a generic expression for GME current in quasi-2d materials induced by low-frequency light, and provide a Feynman-diagrammatic interpretation. The relations between the 2d finite layered formula and 3d bulk formula are also discussed.
Yanqi Wang, Takahiro Morimoto, Joel Moore (2020). Optical rotation in thin chiral/twisted materials and the gyrotropic magnetic effect. , 101(17), DOI: https://doi.org/10.1103/physrevb.101.174419.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1103/physrevb.101.174419
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access