Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Operating Performance Improvement Based on Prediction and Grade Assessment for Sintering Process

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2021

Operating Performance Improvement Based on Prediction and Grade Assessment for Sintering Process

0 Datasets

0 Files

en
2021
Vol 52 (10)
Vol. 52
DOI: 10.1109/tcyb.2021.3071665

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Witold Pedrycz
Witold Pedrycz

University of Alberta

Verified
Sheng Du
Min Wu
Luefeng Chen
+3 more

Abstract

Sintering is the preproduction process of ironmaking, whose products are the basis of ironmaking. How to improve the operating performance of the iron ore sintering process has always been a problem that operators are committed to solve. An operating performance improvement method based on prediction and grade assessment is presented in this article. First, considering the data distribution characteristics of the process, a performance index prediction model based on the Gaussian process regression is built, in which the mutual information analysis method is used to select the inputs of the performance index prediction model. Then, the operating performance grade is assessed by a threshold division method. Next, the operating performance grade guides the control of the burn-through point to improve the operating performance. Finally, experimental verification is performed based on the actual running data. The results show that the proposed method has high prediction accuracy, and it is also significant in improving the operating performance. Therefore, this approach provides an effective solution to predict and improve operating performance.

How to cite this publication

Sheng Du, Min Wu, Luefeng Chen, Li Jin, Weihua Cao, Witold Pedrycz (2021). Operating Performance Improvement Based on Prediction and Grade Assessment for Sintering Process. , 52(10), DOI: https://doi.org/10.1109/tcyb.2021.3071665.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/tcyb.2021.3071665

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access