0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper describes the influence of dynamic tension/compression loading on notched and unnotched nylon specimens fabricated by Injection Molding (IM) and Selective Laser Sintering (SLS). The main objective of this work is to analyze and describe the differences in material structure and fatigue properties of as-built nylon parts produced by IM and SLM from the same polyamide 12 powder. The differences in dimensional quality, density, surface roughness, crystal structure and crystallinity are systematically measured and linked to the mechanical fatigue properties. The fatigue properties of the unnotched SLS specimens are found to be equal to those of the unnotched IM specimens. The presence of pores in the sintered samples does not lead to rapid failure, and the microvoid coalescence failure mechanism is delayed. The notched specimens show more brittle failure and increased fatigue resistance which is caused by local notch-strengthening. The results enable improved understanding of the difference in material structure and fatigue behavior of selective laser sintered and injection molded polyamide.
Brecht Van Hooreweder, David Moens, René Boonen, Jean-pierre Kruth, Paul Sas (2013). On the difference in material structure and fatigue properties of nylon specimens produced by injection molding and selective laser sintering. Polymer Testing, 32(5), pp. 972-981, DOI: 10.1016/j.polymertesting.2013.04.014.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Polymer Testing
DOI
10.1016/j.polymertesting.2013.04.014
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access