Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. On the application of the Kitagawa–Takahashi diagram to foreign-object damage and high-cycle fatigue

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2002

On the application of the Kitagawa–Takahashi diagram to foreign-object damage and high-cycle fatigue

0 Datasets

0 Files

English
2002
Engineering Fracture Mechanics
Vol 69 (13)
DOI: 10.1016/s0013-7944(01)00152-7

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Robert O. Ritchie
Robert O. Ritchie

University of California, Berkeley

Verified
J. Peters
Brad Boyce
Xi Chen
+3 more

Abstract

The role of foreign-object damage (FOD) and its effect on high-cycle fatigue (HGF) failures in a turbine engine Ti–6Al–4V alloy is examined in the context of the use of the Kitagawa–Takahashi diagram to describe the limiting conditions for such failures. Experimentally, FOD is simulated by firing 1 and 3.2 mm diameter steel spheres onto the flat specimen surface of tensile fatigue specimens at velocities of 200 and 300 m/s. Such damage was found to markedly reduce the fatigue strength of the alloy, primarily due to four factors: stress concentration, microcrack formation, impact-induced plasticity and tensile residual stresses associated with the impact damage. Two groups of fatigue failures could be identified. The first group initiated directly at the impact site, and can be readily described through the use of a fatigue-crack growth threshold concept. Specifically, a Kitagawa–Takahashi approach is presented where the limiting threshold conditions are defined by the stress-concentration corrected smooth-bar fatigue limit (at microstructurally small crack sizes) and a “worst-case” fatigue-crack growth threshold (at larger crack sizes). The second group of failures was caused by fatigue cracks that initiated at locations far from the impact site in regions of high tensile residual stresses, the magnitude of which was computed numerically and measured experimentally using synchrotron X-ray diffraction. Specifically, these failures could be rationalized due to the superposition of the residual stresses on the far-field applied mean stress, leading to a locally elevated load ratio (ratio of minimum to maximum loads). The effects of residual stress, stress concentration, and microstructurally small cracks are combined in a modified Kitagawa–Takahashi approach to provide a mechanistic basis for evaluating the detrimental effect of FOD on HCF failures in Ti–6Al–4V blade alloys.

How to cite this publication

J. Peters, Brad Boyce, Xi Chen, J. M. McNaney, John W. Hutchinson, Robert O. Ritchie (2002). On the application of the Kitagawa–Takahashi diagram to foreign-object damage and high-cycle fatigue. Engineering Fracture Mechanics, 69(13), pp. 1425-1446, DOI: 10.1016/s0013-7944(01)00152-7.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2002

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Engineering Fracture Mechanics

DOI

10.1016/s0013-7944(01)00152-7

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access