Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Odd−Even Effects in Charge Transport across Self-Assembled Monolayers

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2011

Odd−Even Effects in Charge Transport across Self-Assembled Monolayers

0 Datasets

0 Files

en
2011
Vol 133 (9)
Vol. 133
DOI: 10.1021/ja1090436

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
George M M Whitesides
George M M Whitesides

Harvard University

Verified
Martin Thuo
William F. Reus
Christian A. Nijhuis
+4 more

Abstract

This paper compares charge transport across self-assembled monolayers (SAMs) of n-alkanethiols containing odd and even numbers of methylenes. Ultraflat template-stripped silver (Ag(TS)) surfaces support the SAMs, while top electrodes of eutectic gallium-indium (EGaIn) contact the SAMs to form metal/SAM//oxide/EGaIn junctions. The EGaIn spontaneously reacts with ambient oxygen to form a thin (∼1 nm) oxide layer. This oxide layer enables EGaIn to maintain a stable, conical shape (convenient for forming microcontacts to SAMs) while retaining the ability to deform and flow upon contacting a hard surface. Conical electrodes of EGaIn conform (at least partially) to SAMs and generate high yields of working junctions. Ga(2)O(3)/EGaIn top electrodes enable the collection of statistically significant numbers of data in convenient periods of time. The observed difference in charge transport between n-alkanethiols with odd and even numbers of methylenes--the "odd-even effect"--is statistically discernible using these junctions and demonstrates that this technique is sensitive to small differences in the structure and properties of the SAM. Alkanethiols with an even number of methylenes exhibit the expected exponential decrease in current density, J, with increasing chain length, as do alkanethiols with an odd number of methylenes. This trend disappears, however, when the two data sets are analyzed together: alkanethiols with an even number of methylenes typically show higher J than homologous alkanethiols with an odd number of methylenes. The precision of the present measurements and the statistical power of the present analysis are only sufficient to identify, with statistical confidence, the difference between an odd and even number of methylenes with respect to J, but not with respect to the tunneling decay constant, β, or the pre-exponential factor, J(0). This paper includes a discussion of the possible origins of the odd-even effect but does not endorse a single explanation.

How to cite this publication

Martin Thuo, William F. Reus, Christian A. Nijhuis, Jabulani R. Barber, Choongik Kim, Michael D. Schulz, George M M Whitesides (2011). Odd−Even Effects in Charge Transport across Self-Assembled Monolayers. , 133(9), DOI: https://doi.org/10.1021/ja1090436.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2011

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/ja1090436

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access