0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this article, the issue of sliding mode control for nonlinear stochastic Markovian jump systems with uncertain time-varying delay is investigated. Considering the system state measurements and the state-dependent disturbances are not available for feedback purposes, an observer-based adaptive control strategy is proposed. Based on the decomposition of the input matrices, the state-space representation of the system is turned into a regular form with the aid of T-S fuzzy models first. Then, a fuzzy observer system is constructed, which could be transformed into two lower order subsystems. By choosing a common linear switching surface, on which it also obtains linear sliding mode dynamics in a simple form. Further, an adaptive controller is synthesized relying on the bounded system delay information to ensure the estimated states driven on the predefined sliding surface and remain the sliding motion. Also, the stochastic stability analysis of the sliding mode dynamics is undertaken with two types of transition rates, and an interesting result reveals that the stability for the dynamics with type of uncertain transition rates may cover the completely known type. Finally, a single-link robot arm model is provided to verify the validity of the proposed method.
Baoping Jiang, Hamid Reza Karimi, Shichun Yang, Cunchen Gao, Yonggui Kao (2020). Observer-Based Adaptive Sliding Mode Control for Nonlinear Stochastic Markov Jump Systems via T–S Fuzzy Modeling: Applications to Robot Arm Model. IEEE Transactions on Industrial Electronics, 68(1), pp. 466-477, DOI: 10.1109/tie.2020.2965501.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Industrial Electronics
DOI
10.1109/tie.2020.2965501
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access