0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper investigates an adaptive consensus problem of a class of nonlinear multiagent systems in which the states are unmeasurable and the dynamics of all agents are supposed to be in strict-feedback form with unknown time-varying control coefficients. Due to the presence of uncertain nonlinearities in agents' dynamics, radial basis function neural networks are used to approximate the unknown nonlinear functions, and a neural-network-based observer is designed to estimate the unmeasured states. The adaptive observer-based protocols are based on the relative output information of neighbors, and are constructed by adopting the dynamic surface control technique. It is proved that practical consensus of the system can be achieved with the proposed protocols. A simulation example is given to show the effectiveness of the proposed method.
Jun Mao, Hamid Reza Karimi, Zhengrong Xiang (2017). Observer-Based Adaptive Consensus for a Class of Nonlinear Multiagent Systems. IEEE Transactions on Systems Man and Cybernetics Systems, 49(9), pp. 1893-1900, DOI: 10.1109/tsmc.2017.2776219.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Systems Man and Cybernetics Systems
DOI
10.1109/tsmc.2017.2776219
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access