0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this work, H(2) absorption and desorption in faceted, crystalline Au/Pd core/shell nanocrystals and their interaction with a SiO(x)/Si support were studied at the single-particle level. Dark-field microscopy was used to monitor the changing optical properties of these Au/Pd nanoparticles (NPs) upon exposure to H(2) as reversible H(2) uptake from the Pd shell proceeded. Analysis of the heterogeneous ensemble of NPs revealed the H(2) uptake trajectory of each nanocrystal to be shape-dependent. Differences in particle uptake trajectories were observed for individual particles with different shapes, faceting, and Pd shell thickness. In addition to palladium hydride formation, the single-particle trajectories were able to decipher specific instances where palladium silicide formation and Au/Pd interdiffusion occurred and helped us determine that this was more frequently seen in those particles within an ensemble having thicker Pd shells. This noninvasive, plasmonic-based direct sensing technique shows the importance of single-particle experiments in catalytically active systems and provides a foundation for studying more complex catalytic processes in inhomogeneous NP systems.
Ming Lee Tang, Na Liu, Jennifer A. Dionne, Paul Alivisatos (2011). Observations of Shape-Dependent Hydrogen Uptake Trajectories from Single Nanocrystals. , 133(34), DOI: https://doi.org/10.1021/ja203215b.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2011
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/ja203215b
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access