0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this paper, influence of external magnetic field and thermal radiation on heat transfer intensification of nanofluid in a porous curved enclosure is simulated. Magnetic field and shape factor effects on nanofluid properties are taken into account. Final equations are obtained by means of vorticity stream function formulation and they are solved via Control volume based finite element method. Isotherms and streamlines are shown for various values of Darcy number, Fe3O4-water nanofluid volume fraction, radiation parameter, Hartmann number and Rayleigh number. Results indicate that maximum Nusselt number is obtained for Platelet shaped nanoparticles. Heat transfer rate augments with rise of permeability of porous media and Rayleigh number and opposite trend is observed for Hartmann number. Besides, it can be found that velocity of nanofluid decreases with increase of Lorentz forces.
Mohsen Sheikholeslami, M. Shamlooei, Rasoul Moradi (2017). Numerical simulation for heat transfer intensification of nanofluid in a porous curved enclosure considering shape effect of Fe 3 O 4 nanoparticles. Chemical Engineering and Processing - Process Intensification, 124, pp. 71-82, DOI: 10.1016/j.cep.2017.12.005.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Chemical Engineering and Processing - Process Intensification
DOI
10.1016/j.cep.2017.12.005
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access