Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Numerical simulation for heat transfer intensification of nanofluid in a porous curved enclosure considering shape effect of Fe 3 O 4 nanoparticles

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2017

Numerical simulation for heat transfer intensification of nanofluid in a porous curved enclosure considering shape effect of Fe 3 O 4 nanoparticles

0 Datasets

0 Files

English
2017
Chemical Engineering and Processing - Process Intensification
Vol 124
DOI: 10.1016/j.cep.2017.12.005

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohsen Sheikholeslami
Mohsen Sheikholeslami

Babol Noshirvani University

Verified
Mohsen Sheikholeslami
M. Shamlooei
Rasoul Moradi

Abstract

In this paper, influence of external magnetic field and thermal radiation on heat transfer intensification of nanofluid in a porous curved enclosure is simulated. Magnetic field and shape factor effects on nanofluid properties are taken into account. Final equations are obtained by means of vorticity stream function formulation and they are solved via Control volume based finite element method. Isotherms and streamlines are shown for various values of Darcy number, Fe3O4-water nanofluid volume fraction, radiation parameter, Hartmann number and Rayleigh number. Results indicate that maximum Nusselt number is obtained for Platelet shaped nanoparticles. Heat transfer rate augments with rise of permeability of porous media and Rayleigh number and opposite trend is observed for Hartmann number. Besides, it can be found that velocity of nanofluid decreases with increase of Lorentz forces.

How to cite this publication

Mohsen Sheikholeslami, M. Shamlooei, Rasoul Moradi (2017). Numerical simulation for heat transfer intensification of nanofluid in a porous curved enclosure considering shape effect of Fe 3 O 4 nanoparticles. Chemical Engineering and Processing - Process Intensification, 124, pp. 71-82, DOI: 10.1016/j.cep.2017.12.005.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Chemical Engineering and Processing - Process Intensification

DOI

10.1016/j.cep.2017.12.005

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access