0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessABSTRACT Anellovirus infections are ubiquitous in mammals but lack any clear disease association, suggesting a commensal virus-host relationship. Although anelloviruses have been identified in numerous mammalian hosts, their presence in members of the family Delphinidae has yet to be reported. Here, using a metagenomic approach, we characterize complete anellovirus genomes ( n = 69) from four Delphinidae host species: short-finned pilot whale ( Globicephala macrorhynchus , n = 19), killer whale ( Orcinus orca , n = 9), false killer whale ( Pseudorca crassidens , n = 6), and pantropical spotted dolphin ( Steno attenuatus , n = 1). Sequence comparison of the open reading frame 1 (ORF1) encoding the capsid protein, the only conserved gene shared by all anelloviruses, shows that the Delphinidae anelloviruses form a novel genus-level clade that encompasses 22 unique species-level groupings. We provide evidence that different Delphinidae species can be co-infected by multiple anelloviruses belonging to distinct species groupings. Notably, the ORF1 protein of the Delphinidae anelloviruses is considerably larger than those encoded by all previously described anelloviruses from other hosts (spanning 14 vertebrate orders and including 27 families). Comprehensive analysis of the ORF1 sequences and predicted protein structures showed that the increased size of these proteins results from divergent elaborations within the capsid-distal P2 subdomain and elongation of the C-terminal domain of ORF1. Comparative structural and phylogenetic analyses suggest that acquisition of the P2 subdomain and its diversification occurred convergently in the anelloviruses associated with primate and Delphinidae hosts. Collectively, our results further the appreciation of diversity and evolution of the ubiquitous and enigmatic viruses in the family Anelloviridae . IMPORTANCE Anelloviruses are ubiquitous in mammals, but their infection has not yet been linked to any disease, suggesting a commensal virus-host relationship. Here, we describe the first anelloviruses associated with diverse species of dolphins. The dolphinid anelloviruses represent a new genus (tentatively named “Qoptorquevirus”) and encode open reading frame 1 (ORF1) (capsid) proteins that are considerably larger than those encoded by previously described anelloviruses from other hosts. Comprehensive analysis of the ORF1 sequences and predicted protein structures revealed the underlying structural basis for such an extravagant ORF1 size and suggested that ORF1 size increased convergently in the anelloviruses associated with primate and Delphinidae hosts, respectively. Collectively, our results provide insights into the diversity and evolution of Anelloviridae . Further exploration of the anellovirus diversity, especially in the host species that have not yet been sampled, is expected to further clarify their evolutionary trajectory and explain the unusual virus-host commensal relationship.
Matthew D. De Koch, Mart Krupovìč, Russell Fielding, Kendal Smith, Kelsie Schiavone, Katharine R. Hall, Vincent S. Reid, Diallo Boyea, Emma L. Smith, Kara Schmidlin, Rafaela S. Fontenele, Eugene V Koonin, Darren P. Martin, Simona Kraberger, Arvind Varsani (2024). Novel lineage of anelloviruses with large genomes identified in dolphins. , 99(1), DOI: https://doi.org/10.1128/jvi.01370-24.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
15
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1128/jvi.01370-24
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access