Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Nonlinear Phenomena in Microfluidics

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Nonlinear Phenomena in Microfluidics

0 Datasets

0 Files

en
2022
Vol 122 (7)
Vol. 122
DOI: 10.1021/acs.chemrev.1c00985

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
George M M Whitesides
George M M Whitesides

Harvard University

Verified
Sarah Battat
David A. Weitz
George M M Whitesides

Abstract

This review focuses on experimental work on nonlinear phenomena in microfluidics, which for the most part are phenomena for which the velocity of a fluid flowing through a microfluidic channel does not scale proportionately with the pressure drop. Examples include oscillations, flow-switching behaviors, and bifurcations. These phenomena are qualitatively distinct from laminar, diffusion-limited flows that are often associated with microfluidics. We explore the nonlinear behaviors of bubbles or droplets when they travel alone or in trains through a microfluidic network or when they assemble into either one- or two-dimensional crystals. We consider the nonlinearities that can be induced by the geometry of channels, such as their curvature or the bas-relief patterning of their base. By casting posts, barriers, or membranes─situated inside channels─from stimuli-responsive or flexible materials, the shape, size, or configuration of these elements can be altered by flowing fluids, which may enable autonomous flow control. We also highlight some of the nonlinearities that arise from operating devices at intermediate Reynolds numbers or from using non-Newtonian fluids or liquid metals. We include a brief discussion of relevant practical applications, including flow gating, mixing, and particle separations.

How to cite this publication

Sarah Battat, David A. Weitz, George M M Whitesides (2022). Nonlinear Phenomena in Microfluidics. , 122(7), DOI: https://doi.org/10.1021/acs.chemrev.1c00985.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acs.chemrev.1c00985

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access